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Abstract

Regulators in the U.S. property insurance market face a critical challenge: tran-
sitioning from static, formula-based capital requirements to dynamic, model-based
regimes. While dynamic regulation offers the potential to improve social welfare
and market resilience, it suffers from two major barriers: computational intractabil-
ity under profound uncertainty and a lack of interpretability required for regulatory
oversight. In this paper, I propose a novel framework for outcome-based regula-
tory design. I develop a “Learn-Verify-Explain” methodology that utilizes Deep
Reinforcement Learning to discover optimal dynamic capital strategies. Unlike
traditional black-box approaches, my framework integrates Formal Verification to
mathematically guarantee compliance with safety constraints and Decision Tree
Extraction to distill complex policies into transparent, implementable rules. Em-
pirical results demonstrate that this hybrid approach outperforms traditional static
benchmarks, increasing social welfare by approximately 35% while reducing insol-
vency rates to zero. Crucially, the distilled policy reveals a risk-sensitive stabiliza-
tion strategy: the agent learns to prioritize market efficiency through deregulation
during stable periods, while imposing immediate corrective tightening upon detect-
ing early signs of distress. This study provides an experiment of “Al-in-the-loop”

financial regulation.

1 Introduction

The property insurance sector is facing an existential challenge: the accelerating and
evolving nature of risk due to climate change. Traditional capital regulation, characterized
by static, formula-based rules, is ill-equipped to manage the modern catastrophic events.
This has ignited a policy debate on shifting toward dynamic, model-based regulation.
However, finding a truly effective dynamic policy is a challenge of immense complexity

that pushes the boundaries of traditional policy analysis.



Standard counterfactual analysis involves manually selecting a few potential policy
thresholds (e.g., capital requirements of 200%, 250%, 300%) and testing them against
a small number of hand-picked future scenarios (e.g., a “mild year”, a “catastrophic
year”). This approach suffers from three critical limitations: it is anecdotal, yielding
policies that are only robust to the few futures one can imagine; and it is crippled by
the curse of dimensionality, making it impossible to explore the complex interactions of
a multi-lever policy.

This research confronts these challenges directly. Its primary objective is to find an
optimal capital regulation policy by developing a framework that can intelligently search
the vast space of possible dynamic strategies. This leads to the central questions: How can
we find a dynamic capital regulation strategy that is robust across a wide distribution of
possible futures? And how can we design such a framework to be provably safe, auditable,
and transparent, overcoming the typical “black box” nature of advanced reinforcement
learning?

To answer this, I propose a novel solution: a regulatory framework that integrates a
Reinforcement Learning agent (the “Learner”) with a Formal Reasoning module (the
“Guardian”). The RL Learner overcomes the limitations of manual analysis by au-
tonomously exploring millions of possible futures to discover a complete, far-sighted
strategy—a function that maps any market state to an optimal action. The Guardian,
using the techniques of formal verification, then acts as a safety layer, mathematically
guaranteeing that the Learner’s sophisticated policies never violate core regulatory prin-
ciples. Finally, by training an interpretable model like a decision tree on the RL agent’s
actions, I extract a set of human-readable rules to render the complex policy transparent.
This hybrid approach aims to create a system that is both intelligent and wise, capa-
ble of fostering a resilient insurance sector that can adapt to future uncertainties in a
trustworthy manner.

I demonstrate that the Safe-RL agent significantly outperforms static regulatory
benchmarks, achieving a welfare gain of over $50 million per period compared to the
status quo while eliminating insolvencies. Analysis of the learned policy reveals that
the agent identifies an optimal capital baseline multiplier of approximately 2.93, signif-
icantly higher than the current standard of 2.0. Furthermore, the extracted decision
rules highlight a sophisticated behavioral asymmetry: rather than adhering to a simple
counter-cyclical rule, the agent targets efficiency by relaxing constraints when capital ra-
tios are moderate, but pivots to aggressive tightening to contain contagion immediately
after observing insolvencies.

This paper contributes primarily to the literature on optimal capital requirements
in the insurance market. |Goussebaile| [2022] conducts a theoretical welfare analysis of
solvency regulation in the context of catastrophe insurance, while Boonen| [2023] ex-

amines the Pareto-optimal reinsurance problem under solvency constraints. This work



builds directly upon my job market paper, “What Constrains Insolvency in Property
Insurance? Market Discipline, Capital Regulation, and Catastrophe Exposure”, which
employed structural estimation to find a single optimal static threshold. I advance this
literature by replacing the search for a static rule with a Reinforcement Learning ap-
proach, enabling the derivation of a function 7 (S;) — a; that tailors capital requirements
to specific market states.

Secondly, this paper contributes to the application of Reinforcement Learning (RL)
in finance. Early influential work by |Jiang et al.|[2017] demonstrated how deep RL ar-
chitectures can learn portfolio allocation strategies directly from data. Recent reviews by
Bai et al.|[2025] highlight both the advances in model-based RL and persistent challenges
regarding non-stationarity and reproducibility. I address these challenges by embedding
the RL agent within a structural economic model, ensuring that the agent learns from
causal mechanisms rather than spurious correlations.

Finally, I draw upon the literature on “Safe RL” and Formal Methods. Constrained
RL methods, such as Constrained Policy Optimization [Achiam et al., 2017], attempt to
learn policies that respect expected costs. [Alshiekh et al. [2018] propose a “shielding”
paradigm which synthesizes runtime monitors to prevent safety violations. By pairing
a model-based Learner with a logic-based Guardian, I satisfy the dual requirements of

adaptive optimization and regulatory accountability, consistent with [Landers| 2023].

2 Data

I model the U.S. property insurance market as a dynamic game between a regulator and
a set of competing insurers. The environment is calibrated using administrative data
from the National Association of Insurance Commissioners (NAIC) and catastrophe data
from the Spatial Hazard Events and Losses Database (SHELDUS). The empirical analysis
relies primarily on NAIC statutory filings, which provide company-level information for all
insurers operating in the United States. State-level data on natural disasters are obtained
from SHELDUS, while information on insurers’ rate changes is drawn from the System
for Electronic Rates & Forms Filing (SERFF). Reinsurance prices are measured using the
Guy Carpenter Global Property Rate on Line Index, which is common across insurers
and varies only over time. With the exception of natural disaster exposure, insurers’ price
changes, and reinsurance prices, all remaining variables are constructed from NAIC data.
The analysis focuses on property insurance lines identified by the NAIC as exposed to
natural disasters, including fire, allied lines (such as water damage), homeowners multiple
perils, commercial multiple perils (non-liability portion), earthquake, and farm owners
multiple perils. Government-supported or provided crop insurance lines (multiple peril
crops and private crops) are excluded from the sample. An insurer’s market share within

a given state is defined as the ratio of its direct written premiums to total direct written



premiums in that state for the relevant lines of business.

3 The Insurance Market Environment

This section develops a structural model of the property insurance market, incorporating
limited liability, capital regulation, credit ratings, and catastrophe risk. The model is
static within each period ¢, but dynamic over time as capital evolves and regulatory

requirements change in reinforcement learning.

3.1 Market Structure and Timeline

The economy consists of a set of insurers J and a continuum of risk-averse households
indexed by i. There are two market segments m € {risky, less risky}. Risky Regions are
highly exposed to hurricane and earthquake risks. (Market 1) Less Risky Regions are
states with lower catastrophe exposure. (Market 2) The timing of events within a single

period t is as follows:
1. Regulation: The regulator sets the capital requirement multiplier Kyeq .

2. Firm Optimization: Insurers observe their current capital and the regulation.
They simultaneously choose prices (p1, p2), asset allocation (risk-free assets A;; and

risky assets Ay;), and reinsurance strategies to maximize expected firm value.
3. Credit Ratings: Credit rating agencies assign credit ratings.

4. Demand: Households observe prices and credit ratings [2;, then purchase insurance

policies.
5. Shock Realization: Catastrophe losses L,,, and investment returns r, are realized.

6. Solvency & Welfare: Profits are calculated. Firms with negative equity become
insolvent. The State Guaranty Fund assesses surviving firms to cover claims, and

social welfare is computed.

3.2 Household Demand

Households demand property insurance to hedge against loss. The demand follows a
standard Multinomial Logit model. The utility of consumer i choosing insurer j in market
m is given by:

Uijm = Q1Pjm + OéQRj + fjm + €ijm (1)



where pj,, is the premium, R; is the insurer’s financial strength rating (endogenously
determined), §;,,, represents unobserved quality, and €;;,, is an ii.d. Type I extreme
value error term.

The market share of insurer j in market m is:

exp(a1pjm + R + &jm)

sim(p,R) =
’ ( ) Zkeju{o} exp(alpkm + Q2Rk + Skm)

(2)

where £ = 0 represents the outside option. Since I don’t observe households who are
not insured, I use one of the firm j' as the outside option. The total quantity of risks

underwritten by firm j is gjm = M, - Sjm, Where M,, is the market size.

3.3 Insurer Optimization

Insurers are risk-neutral, limited-liability firms. At the start of period ¢, insurer j holds
initial capital Asoar;—1. Facing the regulatory constraint s,eq:, the firm solves the fol-

lowing optimization problem to determine prices and asset allocation:

max E[H]] - Cdrag - Cadj - Preg (3)

pinypout7A2j
Expected Profit (E[II;]): The firm estimates profit via Monte Carlo simulation

over N draws of loss shocks (loss in risky market L;, loss in less risky market L) and

investment returns of risky assets (rz).

IL vawe = E DjmQjm — E Ly,qjm —Costs; + Rec;. + (r1Ayj + r2As))
\/—/ (. ~ /
N m _, Reinsurance recovery minus reinsurance costs Inv. Income
vV Vv
Premium Claims

(4)
II; = max (I yaw, —(A1; + Ag; + v4))  (Limited Liability) (5)

Here, 71 is the risk-free rate, r, is the stochastic risky return, and v, is a frictional default
parameter which I will need to estimate within the model.

Cost of Capital (Cy4g): Holding capital is costly. The firm pays a friction cost on
its total equity base:

Odrag = ¢cap : (Alj + A2j) (6)

where ¢, is the cost of risky capital parameter (e.g., 0.02).
Adjustment Cost (C,4): Firms face frictions when altering their capital signifi-

cantly from the previous period:

Cadi = adgj - |(A1j + Asj) — Atotalji—1 (7)



Regulatory Penalty (P,.,): The firm must satisfy the capital requirement.
Constraint: Ayj + Agj > Kpegt - K (Gin» Gout Asj) (8)

where K(-) is the Authorized Control Level Risk-Based Capital (RBC) predicted by a
Generalized Additive Model (GAM) trained on historical data. In the optimization, this

is implemented as a soft penalty to ensure solver convergence:
Preg = A - max (07 Freqr - K (1) = (Ayy + A2j)> (9)

Endogenous Ratings and Consistency: The credit rating R; is a function g(-) of
the firm’s size and risk exposure. The firm must find a fixed point such that the rating

implied by its choices matches the rating used by consumers to determine demand:

Ao
R; =g (Q<p7 R;)J Ai’ Atotal> (10)
total

p represents a price vector of (py, ps).

3.4 Social Welfare Calculation

The system objective is Total Social Welfare W;, defined as:
Wy = CS; + PS; — InsolvencyCosts, (11)

e Consumer Surplus (CS): Derived from the logit demand structure:

CSt - Z (ZZ_TL In (Z exp(V]m)>> X wscale (12)

m
where 4.0 & 39.1 scales the representative consumer to the population.

e Producer Surplus (PS): The sum of realized profits minus the cost of capital for

all solvent firms:
Pst = Z (HE'?tahzed - (bcapAtotal,j) (13)

j€E€Solvent

e Insolvency Costs: The social cost of firm failures, approximated by Guaranty

Fund assessments.



4 Estimation

The estimation follows my job market paper “What Constrains Insolvency in Property
Insurance? Market Discipline, Capital Regulation, and Catastrophe Exposure”. To cali-
brate the structural model, I employ a multi-step estimation strategy. First, I estimate the
demand parameters using a Generalized Method of Moments (GMM) approach, utilizing
instrumental variables to address the endogeneity of prices and credit ratings. Second, I
estimate the exogenous driving processes of the model—specifically the distributions of
catastrophe losses and investment returns—using maximum likelihood methods. Finally,
I recover the unobserved firm-specific insolvency shocks and structural cost parameters

by solving the inverse problem implied by the insurers’ first-order conditions.

4.1 Demand Estimation

I estimate the parameters of the household utility function, specifically price sensitivity
() and preference for financial strength (as). A challenge in this market is the lack of
data on the uninsured population (the “outside option”). To address this, I employ a
differencing strategy relative to a reference firm j’ (the insurer with the most observations
in the sample).

The market share of firm j relative to the reference firm j' in market m at time ¢ is

given by:
In(Sjme) — In(8jme) = 1 (Djme — Pjrme) + @2(Rje — Rj) + (§me — Ejrme) (14)

where ;,,,; denotes unobserved product quality. Prices (p) and credit ratings (R) are likely
correlated with unobserved quality &, creating endogeneity. Furthermore, the dataset only
contains price changes, not absolute price levels for all years. To recover the structural pa-
rameters and eliminate time-invariant unobserved heterogeneity, I take the first difference

of the relative share equation over time:

A ln(sjmt) — Aln(sj/mt) = (Apjmt — Apj’mt) + OfQ(ARjt — ARj/t) + Aéjmt (15)

where Ax; = x; — x;_1. The estimation is performed using GMM with the moment
condition E[Aé - Z] = 0, where Z is a vector of instrumental variables.
4.1.1 Identification and Instruments

I employ two distinct instrumental variables to identify price and credit rating sensitivi-

ties:



Instrument for Price (Z?): 1 use the realized insurance losses incurred by insurer j in
other markets (m’ # m) as an instrument for price in market m. These losses represent
exogenous cost shocks—driven by regional weather events or accidents—that shift the
supply curve and affect pricing decisions but are uncorrelated with local unobserved

demand shocks (&;,,,+) in the focal market.

Instrument for Credit Rating (Z%): I construct a difference-in-differences style in-
strument based on the 2006 structural shift in credit rating methodologies. Following
Hurricane Katrina (2005), rating agencies such as A.M. Best and S&P significantly tight-
ened capital standards for catastrophe-exposed firms. For instance, S&P shifted from
100-year to 250-year return periods for catastrophe modeling.

The instrument is defined as:
Z}} = Exposure; x I(t > 2006) (16)

where I(¢ > 2006) is an indicator for the post-reform period, and treatment intensity is

defined by the insurer’s geographic exposure:

Property Premiums in Disaster-Prone States;

Exposure; = (17)

Total Direct Written Premiums;

This instrument isolates variation in ratings driven by the exogenous regulatory shift

rather than endogenous firm quality changes.

4.1.2 Demand Results

To recover the level of prices (since estimation uses differences), I normalize the baseline

price of the median firm at ¢ = 0 to 1. The estimation results are presented in Table [I]

Table 1: GMM Estimation Results of Demand Parameters

Parameter Symbol Estimate (SE)
Price Sensitivity Qq —2.3759***
(0.1669)
Rating Preference oy 0.0409***
(0.0001)
Median Price Elasticity n —2.38

Note: Standard errors in parentheses. ***p < 0.01.

The estimated price coefficient is negative and significant, implying a median price
elasticity of —2.38. The positive coefficient on credit rating confirms that consumers

derive utility from insurer financial strength.



4.2 Supply-Side Estimation

The supply side of the model involves estimating the transition functions (credit ratings
and capital requirements), the stochastic shock distributions, and the structural cost

parameters.

4.2.1 Credit Rating and Capital Requirement Functions

In the dynamic model, credit ratings and regulatory capital requirements are endogenous
functions of firm characteristics. I estimate these relationships using Generalized Additive
Models (GAM) to capture non-linearities while maintaining interpretability.

Credit Rating Function g(-): The credit rating R; is modeled as a smooth function

of written premiums (q), asset allocation (As/Atotar), and size:
Rjy =Y fulXjm) + € (18)
k

I estimate separate functions for the pre-2006 and post-2006 regimes to account for the
rating standard change. The estimation results confirm that higher leverage (share of
risky assets) penalizes ratings, while larger asset bases improve them.

Capital Requirement Function K(-): Similarly, the Authorized Control Level
RBC is estimated via GAM. The model achieves a high goodness-of-fit (R? =~ 96% pre-
2017, R?* ~ 90% post-2017), accurately capturing the regulatory formulas used by the
NAIC.

4.2.2 Stochastic Distributions

The model features two sources of uncertainty: investment returns and insurance losses.
For Risky Asset Returns (rg), I fit a Normal Inverse Gaussian (NIG) distribution to
historical investment return data. The NIG distribution allows for semi-heavy tails and
skewness, which are characteristic of financial returns. For Loss Rates (L,,), Insurance
loss data exhibits a mass at zero and a heavy right tail. I estimate a Hurdle Log-
Normal model, where a Bernoulli process determines if a loss occurs, and a Log-Normal

distribution determines the severity.

4.2.3 Reinsurance and Smooth Payoffs

Reinsurance quantity ()7¢ is inferred from reinsurance premiums by dividing by a global
rate-on-line index. I approximate the insurers’ reinsurance strategy using a median quan-
tile regression on written premiums.

To enable gradient-based optimization in the counterfactuals, the reinsurance payoff

structure—typically a defined benefit with limits—is approximated using smooth func-



tions. The discrete payoff min{p"™Q", max{0, L — d}} is replaced by a Softmin-Softmax
formulation: )
Payoff av — - In (770 o i Seliwhustia=d) (19)

where Softplus(z) = 1 In(1 + €**). Estimation yields a smoothness parameter k = 5 and

a deductible d ~ $2.26 million.

4.2.4 Structural Parameters and Insolvency Shocks

Two key structural parameters are not directly observable: the social cost of insolvency
and firm-specific resistance to insolvency (v/¥).

Social Cost of Insolvency: I approximate the external cost of a firm failure using
data from State Guaranty Association assessments. These assessments represent the
shortfall in claims payments covered by surviving firms (and ultimately consumers). The
average assessment per insolvency in the sample is $25.095 million.

Unobserved Insolvency Shocks (v¢): I recover the firm-specific shock vf via
a revealed preference approach. Assuming observed capital and pricing decisions are
optimal, they must satisfy the Karush-Kuhn-Tucker (KKT) conditions of the insurer’s
maximization problem (Equation [3).

For each firm-year observation, I invert the first-order conditions with respect to
capital. If the regulatory constraint is binding, I jointly solve for the Lagrange multiplier
A and vf. If not binding (A = 0), I solve for v¢ directly. The resulting distribution of ¢
(Median ~ $583 million) captures unobserved franchise value and reputational costs that

deter firms from declaring bankruptcy.

5 Reinforcement Learning Framework

I formulate the regulatory problem as a Markov Decision Process (MDP) defined by the
tuple (S, A, T, R, ).

5.1 State Space (S)

The state S; € R® provides a compressed representation of the market’s financial health.

S; is the state space.

pr  Mean Capital Ratio (Total Capital / RBC)
Py x  10th Percentile Capital Ratio (Tail Risk)
Pyo i 90th Percentile Capital Ratio
Ninsolw Number of insolvencies in t — 1

ik Mean share of risky assets (Ag;/Atotal)

| Freg—1 Previous Capital Requirement Multiplier

10



5.2 Action Space (A)

The agent controls the stringency of capital regulation. The action a; € [—1, 1] represents

the relative change to the capital multiplier. The new multiplier is updated as:
Kregt = CHP (Kregi—1 - (14+0.2-a;), 0.1, 8.0) (21)

This formulation allows for continuous adjustment while naturally limiting the magnitude
of sudden regulatory shifts (max 20% change per step). 0.1 and 8.0 represent lower bound

and upper bound of capital regulation threshold k¢, in this case.

5.3 Reward Function Design

The reward function r; is the signal used to train the Reinforcement Learning agent. It is
designed to reflect the objectives of a Smarter Regulator: maximizing social utility while
maintaining systemic stability and policy predictability. The reward at time ¢ is defined

as:

re = 51Wt - 52|Gt - at—l’ - Q(St—l-l) (22)
—— —— N——

Economic Objective Policy Stability Safety Constraint

Economic Objective ($;) The primary term W; is the Total Social Welfare (the sum
of consumer surplus, producer surplus, and insolvency costs). I set 3; = 1076 to scale
the raw dollar values into a range suitable for the neural network’s gradient updates,

preventing numerical instability during training.

Policy Stability (52) To prevent large regulatory jumps, I introduce a smoothness
penalty with #5 = 0.1. This term penalizes large deviations from the previous period’s
action a;_;. This encourages the agent to adopt a predictable, gradual regulatory path,
which reduces market uncertainty and allows insurers to adjust their capital structures

efficiently.

Safety Penalty (€2) The most critical component is the Safety Penalty €2(.S;,1), which
acts as a soft barrier to protect the market from systemic fragility. Unlike the average
capital ratio, which can mask the weakness of individual firms, this penalty focuses on
the 10th percentile of the capital-to-RBC ratio (P k), capturing the weakest links in
the industry. The penalty is formulated as:

2.0 - (125 — P107K)2 +0.2 if PlO,K < 1.25
Q(S+1) = (23)
0 otherwise

11



The penalty logic consists of three distinct layers: First, the threshold is set at 1.25
as a Safety Buffer. Since a ratio of 1.0 represents the technical threshold for regulatory
intervention, the 1.25 level provides a 25% precautionary buffer.

Second, the flat +0.2 term ensures that as soon as the agent allows the weakest firms
to enter the ”danger zone,” it incurs an immediate and significant loss in reward.

Third, the squared term (1.25 — Py i) ensures that the penalty grows exponentially
as the market becomes more fragile. This forces the RL policy to treat insolvency risk as

a hard constraint that outweighs marginal gains in consumer or producer surplus.

5.4 Algorithm

[ utilize Proximal Policy Optimization (PPO), an on-policy gradient method, to optimize

the policy parameter . The objective is to maximize the clipped surrogate objective:
LEMP(9) = B, |min(r,(0) Ay, clip(r:(0), 1 — ¢, 1 + ¢) A,) (24)

To ensure the RL agent is safe for deployment and its decisions are interpretable, I

implement a post-training wrapper (The Guardian) and a distillation technique.

5.5 The Guardian Module

The Guardian is a deterministic function G : A x § — A that intercepts the neural
network’s raw action a,., and enforces safety constraints before execution.
Rule 1: Stability (Anti-Whiplash)

The regulator cannot change the multiplier by more than 20% in a single step.
'Liproposed = K¢—1 (1 -+ 0.2 - araw) — Kt € [0.8/@5,1, 1.2/{/7&,1] (25)

Rule 2: Anti-Fragility (Minimum Safe Floor)
If the market is already fragile, the regulator is forbidden from relaxing requirements
below a known safe baseline (k = 2.0 is the safe baseline). A fragile market means the

average risk-based capital ratio g is lower than 3.
If pr < 3.0 (Fragile) = k; = max(Kproposed, 2.0) (26)

5.6 Policy Distillation (Explainability)

To extract an explicit rulebook from the “black box” neural network 7y, I employ policy
distillation. T generate a dataset D = {(S;,m(S5;))}X; by querying the agent in N =
10, 000 simulated states.

12



I train a Decision Tree Regressor 7' to approximate my by minimizing the Mean

Squared Error:
N
min ;(We(si) —T(8))? (27)

The resulting tree (max depth 3) provides a transparent set of threshold rules (e.g., “If
Capital Ratio < 3.15, Increase capital regulation threshold £”) that explains over 90% of

the variance in the agent’s behavior.

6 Results and Discussion

I evaluate the performance of the trained Neuro-Symbolic RL agent against two static
regulatory benchmarks: the status quo (current NAIC standard) and a conservative
high-capital regime. The evaluation is conducted over 5,000 simulated periods to ensure

statistical significance.

6.1 Comparative Welfare Analysis
Table [2 presents the aggregate performance metrics for three distinct strategies:

1. RL Agent (Relative): The dynamic policy learned by the agent, constrained by
the Guardian.

2. Static k = 2.0 (Status Quo): The current regulatory standard where the Autho-
rized Control Level (ACL) multiplier is fixed at 2.0.

3. Static k = 4.0 (Conservative): A strict regime requiring insurers to hold double

the standard capital buffer.

Table 2: Comparative Performance of Regulatory Strategies

Welfare Welfare Insolvencies Avg Final
Strategy (Mean) (Std Dev) (Avg per Ep) Multiplier Multiplier
RL Agent $213,698,266 10,533,283 0.00 2.93 2.84
Static Kk = 2.0 $158,680,182 184,832,643 0.40 2.00 2.00
Static Kk = 4.0 $147,075,399 158,936,477 0.60 4.00 4.00

Note: Welfare represents the total social surplus per period. Insolvencies are the average number
of firm failures per simulation episode. The Avg Multiplier tracks the mean regulatory capital
threshold Kyeq.

The results highlight three critical findings:
First, the dynamic regulation is efficient. The RL agent achieves a mean welfare of

$213.7 million per period, outperforming the Status Quo (k = 2.0) by approximately

13



35% and the Conservative strategy (k = 4.0) by 45%. Crucially, the standard deviation
of welfare under the RL agent ($10.5 million) is an order of magnitude lower than the
static benchmarks. This indicates that the RL agent not only maximizes surplus but also
significantly reduces market volatility, shielding the economy from the boom-and-bust
cycles observed in the static regimes.

Second, reinforcement learning finds the “Sweet Spot” of capital requirements. The
RL agent converges to an average multiplier of k &~ 2.93. This finding suggests that
the current regulatory standard (k = 2.0) is structurally too lenient for the modeled
catastrophe risks, exposing the system to frequent failures (0.40 insolvencies per episode).
Conversely, the Conservative strategy (k = 4.0) imposes excessive capital costs. While
intended to be safer, the high cost of holding idle capital erodes Producer Surplus and
forces insurers to raise prices, reducing Consumer Surplus. Consequently, the xk = 4.0
strategy yields the lowest total welfare. The RL agent identifies an optimal middle
ground—tightening requirements enough to ensure solvency but not so much that it
stifles the market.

Most notably, the RL agent achieves a zero insolvency rate (0.00). By dynamically
adjusting ke, in response to pre-crisis signals (such as deteriorating capital ratios), the
agent acts preemptively. In contrast, the static kK = 2.0 regime allows insurers to operate
with thin buffers that are easily overwhelmed by tail-event catastrophe shocks. Inter-
estingly, the k = 4.0 regime also experienced insolvencies (0.60). This counter-intuitive
result is driven by the “capital drag”: the excessively high capital requirement makes it
difficult for distressed firms to recover profitability after a shock, forcing them into a slow

liquidation trap.

6.2 Distilling the Policy: The “Black Box” Revealed

To understand how the RL agent achieves these results, I extracted its decision logic
using a Decision Tree Regressor. The resulting tree, visualized in Figure [I], explains the
agent’s behavior with high fidelity (R?* = 0.8452).

The tree reveals that the agent has learned a Risk-Sensitive Stabilization Strat-

egy, distinguishing sharply between normal market conditions and periods of distress.

e Crisis Response (The Root Node): The primary splitting criterion is Num_Insolvencies
< 0.5. The agent treats a “Crisis State” (N > 0, Right Branch) fundamentally
differently from a “Normal State” (N = 0, Left Branch).

— The Safety Lockdown: When insolvencies are detected, the agent’s action

is universally positive (Tightening).

— Corrective Tightening (Bottom Right): The agent checks the current
regulatory setting (Current K Req).

14



« If the current capital requirement is low (k < 3.39), the agent imposes a
strong tightening (value ~ +0.09). This suggests the agent perceives the
low regulation as a contributing factor to the crisis and acts aggressively

to correct it.

 If the requirement is already high (k > 3.39), the tightening is more mod-
erate (value ~ 40.07), acknowledging that the market is already under

strict constraints.

e Normal Times (Left Branch): When the market is stable (0 insolvencies), the

agent focuses on the Industry Capital Ratio to balance safety and welfare.

— Active Relaxation (Moderate Capital): If the Mean Cap Ratio is mod-
erate (< 7.86), the agent engages in aggressive relaxation (value ~ —0.1). By
lowering requirements, the agent reduces the cost of capital for firms, thereby
boosting Producer Surplus and Total Welfare. The sub-branches show this

relaxation is strongest when current requirements are high.

— Maintenance Mode (High Capital): If the industry is highly capital-
ized (Mean_Cap_Ratio > 7.86), the agent’s action drops to near-zero (value ~
—0.01). This indicates that when firms voluntarily hold massive capital buffers,
the regulatory constraint becomes non-binding. The agent learns that lower-
ing requirements further in this regime has diminishing returns for welfare, so

it effectively holds the status quo.

This logic explains the agent’s superior performance. In stable times, it aggressively
minimizes regulatory burdens to maximize welfare, provided the market isn’t too safe
to care. However, upon the first sign of failure, it pivots immediately to a corrective

tightening regime, preventing the contagion that leads to systemic insolvency.
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RL Agent Policy Rules

Num_Insolvencies <= 0.5
samples = 2000
value = -0.0

/ False

Mean_Cap_Ratio <= 7.86
samples = 1649
value = -0.02

N

Mean_Cap_Ratio <= 45.44
samples = 1459
value = -0.01

/

samples = 1347 samples =112
value .0

Current_K_Req <= 3.01
samples = 190
value = -0.1

samples = 115 samples = 75
value =

Figure 1: Decision Tree Distillation of the RL Agent’s Policy

Note: The tree predicts the agent’s chosen change to k. In Crisis states (Right Branch), the agent tightens requirements, doing so more
aggressively if the current x is low. In Stable states (Left Branch), it relaxes requirements to boost welfare, doing so most aggressively when
capital ratios are moderate.



7 Conclusion and Future Steps

This paper presents a novel framework for the design of financial regulation: a “Learn-
Verify-Explain” loop that integrates structural economics with Safe Reinforcement Learn-
ing. Motivated by the inadequacy of static capital rules in the face of climate change, I
trained an Al regulator to dynamically adjust capital requirements in the U.S. property
insurance market.

The results are significant. The Al regulator increases social welfare by over $50 mil-
lion per period compared to the current status quo while completely eliminating insurer
insolvencies in the test set. It achieves this by identifying a new optimal baseline for
capital requirements (k &~ 2.93, up from the current 2.0) and implementing a Dynamic
Risk-Sensitive policy. As revealed by policy distillation, the agent learns to prioritize effi-
ciency (lowering k) during stable periods but switches to immediate corrective tightening
upon detecting insolvency.

Methodologically, this work demonstrates that the “Black Box” problem of Al in
finance can be overcome. By using a Formal Guardian, I mathematically guarantee that
the agent never violates safety constraints. By using Policy Distillation, I convert the
agent’s complex neural weights into transparent rules. This proves that we do not need
to choose between the optimality of Al and the transparency required by law; we can
have both.

This study opens several avenues for future research. (1) Heterogeneous Regulation:
Currently, the regulator sets a single x,., for the entire market. Future work could explore
firm-specific capital requirements based on individual risk profiles, potentially allowing
the agent to target “weak links” without penalizing well-capitalized firms. (2) Non-
Stationary Climate Risk: The current simulation assumes a stationary distribution of
catastrophe shocks. Incorporating a climate trend—where the frequency and severity of
losses increase over time—would test the agent’s ability to “learn” a changing environment

and preemptively harden the market against future climate tipping points.
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